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Amphiphilic a-helix mimetics based on a benzoylurea scaffold ¥
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The design and synthesis of amphiphilic benzoylurea a-helix
mimetics is described. These conformationally constrained
molecules allow for the correct angular and spatial projec-
tion of hydrophobic and hydrophilic groups and thus the
reproduction of side-chains on both faces of an a-helix.

The inhibition of aberrant protein—protein interactions using
small molecules is an attractive approach for the treatment of a
range of pathological conditions. One strategy for the design of
such agents involves the mimicry of common intrafacial
domains such as o-helices where key side-chain residues (often
the i, i + 4, i + 7 positions) play an important role.? Exploitation
of this approach led to the discovery of a compound based on
the benzoylurea scaffold I that has shown 2.4 uM inhibition of
the Bel-xL—Bak interaction in a fluorescence polarization assay.’

However, there are few examples of non-peptidic molecules
able to reproduce the position and angular projection of side-
chains on two faces of an o-helix.* The side-chains projecting
from the exterior face of an o-helix have been widely implicated
in the binding of multiple proteins, bacterial cell wall sensing
and membrane penetration.’

The benzoylurea scaffold offered a logical extension to an
amphiphilic mimic Il of the i, i + 1,7+ 4, i + 6 and i + 8 pos-
itions of a peptide (Fig. 1). To the best of our knowledge there
are currently no mimics of this selection of amino acid side-
chains. We rationalised that commercially available dihydroxy-
lated aromatics would serve as good starting materials for our
syntheses. These molecules allow for a range of straight-forward
alkylation reactions and thus the creation of bespoke mimics in
which both lipophilic and hydrophilic amino acid side-chains are
reproduced. As targets for mimicry we selected aspartic acid,
leucine and methionine as representative examples of amino
acids with polar and non-polar side-chains.

Synthesis of the i, i + 1, i + 4 component commenced with
protection of 3,5-dihydroxybenzoic acid as the benzyl ester” and
alkylation with iso-propyl iodide and tert-butyl bromoacetate to
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give 4. The allyl 6 and 3-butenyl 7 amides were prepared in
excellent yields via hydrogenolysis of the benzyl ester and car-
boxyl activation through acid chloride formation (Scheme 1).

To simplify the synthesis we initially designed a route to an
i+ 6, i+ 7 component (rather than i + 6, i + 8). Dialkylation of
2-nitroresorcinol, followed by reduction of the nitro group and
isocyanate formation, afforded a precursor of the i + 6, i + 7
component 11 in an overall yield of 52% (Scheme 2).

Under our standard conditions of benzoylurea formation with
lithium bis(trimethylsilyl)amide (LiHMDS) in tetrahydrofuran at
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Fig. 1 A synthetic scaffold for mimicry of an o-helix. (a) I benzoyl-
urea scaffold with R", Rz, R} mimicking the i, i + 4, i + 7 side-chains on
one face of an o-helix; (b) II amphiphilic mimic of the i, i + 1, i+ 4, i +
6 and i + 8 side-chains on both faces of an a-helix. (c) Superimposition
of the calculated lowest energy conformer of II (orange, R' = R® =
CH,CO,H, R* = R* = i-Pr, R® = CH,CHCH,) with an o-helix (grey
bonds) showing good spatial and angular agreement of substituents with
side-chains.®
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Scheme 1 Synthesis of the 7, i + 1, i + 4 component.
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Scheme 2 Synthesis of the i + 6, i + 7 component.
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Scheme 3 Fragment union giving a benzoylurea mimic of the , i + 1,
i+4,i+7and i+ 8 side-chain residues.

—78 °C,® there was little reaction between amide 6 and isocya-
nate 11. Since we were able to recover significant amounts of the
starting amide and inseparable mixtures of compounds appar-
ently derived from the isocyanate, we reasoned that the extra
steric bulk of the 6-substituent was hindering nucleophilic
approach of the lithiated amide. Raising the temperature of the
reaction mixture during addition of the isocyanate failed to give
desired product, however generating a more reactive amide with
potassium bis(trimethylsilyl)amide (KHMDS) allowed isolation
of 13 in low yield. It was important to maintain the reaction at
—78 °C and to quench the mixture with acetic acid. Removal of
the #-butyl protecting groups with trifluoroacetic acid proceeded
in excellent yield (Scheme 3).

In order to form an i + 6, i + 8 component we synthesised a
2,5-disubstituted isocyanate 20 from 4-fluoro-3-nitrobenzoic acid
in 6 steps and 66% overall yield. Whilst more direct approaches
from 4-chloro-3-nitrobenzaldehyde and 4-hydroxy-3-chloro-
benzaldehyde were unsuccessful, we were able to synthesise 18
on a gram scale with a single chromatographic step in 67% yield
(Scheme 4).

When treated with KHMDS in tetrahydrofuran at —78 °C,
N-allyl 6 and N-butenyl 7 amides reacted with 2,5-disubstituted
isocyanate 20 to give benzoylureas 21 and 22 in 61% and 64%
yields respectively. Acidic deprotection of the #-butyl esters gave
di-carboxylic acid 23 (Scheme 5).

A single crystal X-ray structure of 22} confirmed the connec-
tivity and the presence of N-H..-O=C (1.9 A) and N-H---Oi-Pr
(2.2 A) hydrogen bonds (Fig. 2a).° Superimposition of this struc-
ture with a model peptide shows good overlap of substituents
with the i, i + 1, i + 4, i + 6 and i + 8 side-chain residues
(Fig. 2b), and is in accordance with our computational modelling
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Scheme 4  Synthesis of the i + 6, i + 8 component.
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Scheme 5 Fragment union giving a benzoylurea mimic of the 7, i + 1,
i+4, i+ 6andi+ 8 side-chain residues.

Fig. 2 (a) X-ray crystal structure of benzoylurea 22 with two intra-mol-
ecular hydrogen bonds providing a constrained conformation (values in
A, t-butyl groups shown in grey). (b) Superimposition of X-ray structure
22 (orange) with an o-helix (grey bonds). There is good agreement
between the side-chain angles and positions of the i, i + 1, i+ 4,i+ 6
and 7 + 8 residues (z-butyl groups omitted for clarity).

work (Fig. 1c). The root mean square deviation (RMSD) for the
five peptide a-carbon atoms and the corresponding scaffold pos-
itions was calculated as 1.25 A.'"® While this value is larger than
those often reported for peptidomimetics it is important to
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consider that the RMSD value will not scale linearly with the
number of positions considered. Previous reports have generally
measured the ‘goodness-of-fit” of only three groups and not the
five substituents of molecule 22. In this scaffold the RMSD
value for the groups on one face of the molecule (i, i + 4 and
i+ 8)is 0.84 A, which compares comparably to the previously
reported benzoylurea mimic of the 7, i + 4 and i + 7 side-chains
0.67 A).>

"H NMR of the deprotected molecule 23 shows the benzoyl-
urea N—H resonance as a sharp singlet at 11.38 (CDCls) and
11.46 (DMSO-dg) consistent with previous studies,® and sup-
ports the existence of an intra-molecular hydrogen bond and thus
a linear scaffold conformation in both of these solvent systems.

In summary, we have designed a route to amphiphilic o-helix
mimetics based on the well-established benzoylurea scaffold,
and have implemented this in a modular and scalable synthesis
of molecules accurately reproducing the spatial and angular pro-
jection of five amino acid side-chains on both sides of an
o-helical strand. This represents a significant improvement in the
scope of non-peptidic peptidomimetics, allowing for mimicry of
hydrophobic and hydrophilic side-chains on two faces of an
o-helix.
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